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Abstract

Truncated Gaussian fields provide a flexible model for defining binary me-
dia with dispersed (as opposed to layered) inclusions. General properties of
excursion sets on these truncated fields are coupled with a distance-based
upscaling algorithm and approximations of point process theory to develop
an estimation approach for effective conductivity in two-dimensions. Estima-
tion of effective conductivity is derived directly from knowledge of the kernel
size used to create the multiGaussian field, defined as the full-width at half
maximum (FWHM), the truncation threshold and conductance values of the
two modes. Therefore, instantiation of the multiGaussian field is not nec-
essary for estimation of the effective conductance. The critical component
of the effective medium approximation developed here is the mean distance
between high conductivity inclusions. This mean distance is characterized
as a function of the FWHM, the truncation threshold and the ratio of the
two modal conductivities. Sensitivity of the resulting effective conductivity
to this mean distance is examined for two levels of contrast in the modal con-
ductances and different FWHM sizes. Results demonstrate that the FWHM
is a robust measure of mean travel distance in the background medium. The
resulting effective conductivities are accurate when compared to numerical
results and results obtained from effective media theory, distance-based up-
scaling and numerical simulation.
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1. Introduction

Determination of a single effective property value from an assemblage of
materials is a long standing research problem in a number of scientific and
engineering fields. Here we focus on development of an effective conductivity
value from a mixture of two materials (binary media) with distinct conduc-
tances. A simple conceptualization of the binary medium as inclusions of a
high/low conductivity material within a continuous matrix of material having
the opposite conductivity serves for discussion here.

Effective properties of materials composed of mixtures of two component
materials have been the subject of study for heat conduction, electrical con-
ductivity, magnetic permeability, and electrical permittivity [? ? ? ? ?
? ? ? ? ]. Hashin and Shtrikman [? ] demonstrate the mathematically
analogous nature of calculations for effective values of the conductance terms
in these varied fields. An extensive amount of work for binary media has fo-
cused on defining the theoretical bounding values for the effective properties
of the medium [? ? ? ? ].

The same approaches to effective medium equations hold for calculation of
effective permeability, or hydraulic conductivity, in steady-state flow through
porous media. Binary models of conductivity are widely applied in subsurface
flow through porous media particularly for representation of permeability
patterns in fluvial deposits (e.g., [? ? ? ? ? ]). Additionally, fractured media
are often characterized using a binary permeability model where the fractures
represent strongly anisotropic, high conductivity inclusions embedded within
a matrix of low conductance. Fractured media can be represented as linear
or planar conductive elements within a less conductive background using
discrete fracture representations [? ? ] or as representation of fractured
zones within continuum models [? ? ? ].

Previous work on binary fields in the context of flow through porous media
has emphasized development of expressions for the effective conductance of
the field as a function of the proportion of the high/low, conductivity phase.
Effective medium theories (EMT) for binary assemblages have focused on
using the conductivities and proportion of the two materials to determine an
effective conductivity value [? ? ? ? ]. Initial development of these theories
used spherical inclusions and more recent work has incorporated additional
information on the shapes of the inclusions [? ? ? ? ? ? ].

Thorough reviews of variations of the EMT-based approaches with com-
parison to other methods can be found in: [? ] and [? ]. EMT-based
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approaches assume non-interaction between inclusions and therefore do not
utilize information on the connectivity or interaction of either phase with
other inclusions of the same phase. In testing against numerical results,
EMT-based approaches work best when the inclusion fraction is less than 50
percent (see [? ? ]).

The effective conductivity formula developed by [? ] incorporates infor-
mation on connectivity of high conductivity inclusions through the average
path length within the low conductivity material. This novel approach moti-
vates exploration of various measures of connectivity and different techniques
for estimating the mean path length between inclusions. A model for these
mean distances tied to the geometry of binary media resulting from trunca-
tion of multiGaussian (mG) fields is proposed herein and the behavior of this
model is compared to previously developed expressions for effective media
and numerical results. We limit comparisons to other approaches developed
for binary media that use information on the modal conductances, propor-
tions and geometry of the phases to calculate effective conductivity. Other
techniques that require full knowledge of a fine scale field in order to com-
plete the upscaling such as renormalization [? ], anisotropic effective medium
approximation [? ] and wavelet coarsening [? ] are not considered here.

A number of numerical techniques are available for simulation of binary
random fields. Indicator geostatistical techniques [? ] with spatial varia-
tion defined through a variogram provide an efficient means of generating
stochastic realizations of binary fields [? ? ? ]. Alternatively, indicator sim-
ulation approaches can be based on transition probabilities between indicator
classes [? ? ]. Typical applications of geostatistical simulation techniques
are focused on generation of fields with more than two classes, multiple in-
dicator simulation, but they can also be used for the generation of binary
fields. Less common approaches for generating spatial binary fields include
object-based and Boolean models [? ], generation of periodic media [? ? ]
and pluriGaussian and truncated mG fields [? ? ].

Development of excursion set theory applied to truncated mG fields over
the past 15 years has been driven by developments in medical imaging and
astrophysics [? ? ? ]. In particular, calculation of the expected values of the
total excursion area, number of distinct excursions and the average excur-
sion size over a threshold value can be calculated from definition of the mG
field and knowledge of the threshold value ([? ? ]). Excursion set theory is
applicable to truncation with a single threshold or multiple thresholds that
produce multiphase fields (e.g.,[? ]). Phillips and Wilson [? ] proposed mean
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threshold crossing distances to estimate correlation lengths of permeability.
However, in contrast to the wide application of mG random fields in hydro-
geology, use of excursion sets from truncated fields for characterization and
modeling of heterogeneous media in groundwater studies has been limited.

We parametrize a form of distance-based uspcaling using point-process
theory and properties of truncated Gaussian fields to develop an expression
for the effective conductance of binary media. This new expression, trun-
cated Gaussian distance-based upscaling (TG-DBU) differs significantly from
the existing distance-based upscaling in that calculation of the effective con-
ductivity does not require instantiation of the binary field. This aspect pro-
vides a distance-based calculation of the effective conductivity that is efficient
enough for iterative parameter estimation. Section 2 summarizes distance-
based upscaling and the salient aspects of point-process theory and truncated
mG fields. Section 3 combines these three elements into an expression for
effective conductance for isotropic inclusions within a background matrix.
In Section 4, this new expression is compared to distance-based upscaling
using full knowledge of the binary field as well as an existing analytical solu-
tion and numerical solutions. Section 5 compares various distance measures
and examines the behavior of the average distance between inclusions in the
neighborhood of the percolation threshold.

2. Estimation of Effective Conductivity

Development of the TG-DBU procedure is motivated by the goal of es-
timating the effective conductance of a binary medium created from thresh-
olding a Gaussian random field without instantiation of that field. The two
modal permeabilities, K1 and K2, are considered known. Given the threshold
at which the field is truncated, and size of the Gaussian kernel used to create
the field as defined by the full-width at half-maximum (FWHM) parameter,
the effective permeability is estimated.

2.1. Distance-Based Upscaling

The distance-based upscaling (DBU) approach developed by [? ] uti-
lizes an estimate of the mean flowpath length between inclusions within the
background (matrix) material as a measure of phase connectivity. Through
application of a phase-change theorem, the DBU approach applies to high or
low conductivity inclusions within a matrix of the opposing material. The
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DBU approach [? ] serves as the foundation for our estimation approach
and is briefly outlined here.

The basis of DBU is conceptualization of each inclusion as a rectangu-
lar object of dimensions (Bx,By) centered within a larger rectangular block,
having the same orientation, of dimensions (Lx,Ly). Fixed pressure bound-
ary conditions on each end of the block and no-flow boundary conditions on
the opposite sides create steady, one-dimensional flow along the x-direction.
Knudby et al [? ] identified an approximate linear relationship between
the inverse of the effective conductivity of the block (KB)−1 and the relative
shape of the inclusion (Bx/Lx)(By/Ly) and used this relationship along with
harmonic and arithmetic conductivity bounds to develop an expression for
(KB)−1:

1

KB

=

(
1

KA

− 1

KH

)
R− p1
1
p1
− p1

+
1

KH

(1)

where KA and KH are the arithmetic and harmonic mean conductivities,
respectively, p1 is the proportion of high permeability material and:

R =
Bx/Lx
By/Ly

=
1
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(
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)2

∈
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1

p1

]
(2)

The expression for (KB)−1 can also be cast as a weighted mean of KA

and KH .

1

KB

= ρ
1

KA

+ (1− ρ)
1

KH

(3)

where ρ is the relative inclusion shape, R, normalized by p1:

ρ =
R− p1
1
p1
− p1

∈ [0, 1] (4)

The distance-based component of the DBU method enters as a normalized
average distance, Dnorm, of the flow in the background medium within the
block:

Dnorm =
Bx − Lx
Lx

(5)

The normalized inclusion shape, ρ, can be restated using Dnorm:
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ρ =
2Dnorm −D2

norm

1− p21
(6)

Expansion of these relationships from a single inclusion within a single
block to a field of inclusions requires calculation of average values across
the field for the inclusion dimensions, Bx, By and block dimensions, Lx, Ly.
A key element of this development is determination of the average distances
between inclusions along the direction of flow; D = L−B. The block domain
is conceptualized as a virtual permeameter centered on each inclusion within
the field. R then represents the average relative inclusion shape and Dnorm

is the normalized average distance between inclusions along the direction of
flow weighted by the area of each connecting inclusion.

In the DBU approach, the average distance, D, is calculated as a weighted
average using distances, D, and inclusion areas A as measured directly on
the binary field:

D =

∑n
j=1

∑n
i=1Di,jAiAj∑n

j=1

∑n
i=1AiAj

(7)

with the average block dimension in the direction of flow, x, calculated as:

B =

∑n
j=1Bx,iAi∑n
i=1Ai

(8)

The normalized average distance between inclusions is: Dnorm = D/L. Use
of these spatial averages renders the block conductivity estimate, KB, as an
effective conductivity, Keff for the domain.

A strong advantage of the DBU is the incorporation of the phase inter-
change theorem [? ]. This theorem provides a relationship between Keff of a
field with low conductivity inclusions in a high conductivity matrix (low-in-
high, LinH) and the generally easier-to-estimate Keff of a complementary
field of high conductivity inclusions in a low conductivity matrix (high-in-
low, HinL). The fixed head and no-flow boundaries are rotated 90 degrees
and applied to the complementary field. The fluxes, Q, through the two fields
are related by:

QLinHQHinL = K1K2(∆H)2 (9)
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where ∆H is the pressure drop across both fields from the prescribed bound-
ary conditions. The product of the effective conductivities for each field is
equal to the product of the two modal conductivities in the binary field:

Keff(HinL)Keff(LinH) = K1K2 (10)

A key advantage of the phase interchange theorem is that it enables the
calculation of the LinH case for any geometry for which the HinL solution
is available.

Knudby et al [? ] demonstrate accurate estimation of Keff for a range of
simulated fields created with Poisson placement of ellipses or rectangles as
well as those created with transition probability-based geostatistical simula-
tion. Within these fields, the ratios of the two conductivities range from 100
to 10, 000. The DBU results are also compared with several other effective
value approaches.

2.2. Excursion Sets and Kernel Size

Calculation of Keff with the DBU method requires both creation of the
binary field and calculation of all inclusion sizes and distances between prox-
imal inclusions. Image processing algorithms are available for these calcula-
tions; however, the computational expense of these algorithms is non-trivial.
Here, we develop an approach for estimation of Keff based on DBU that
estimates the average inter-inclusion distance without explicit creation or
processing of the binary field. This new approach relies on properties of
truncated Gaussian fields to estimate the inclusion sizes and the mean dis-
tance between them and provides an analytical expression for Keff .

The model for spatially correlated multiGaussian (mG) fields is based on
a Gaussian kernel:

G(x, y) =
1

2π|Σ|1/2
exp

(
−1

2
dΣ−1dT

)
(11)

where d is the distance vector containing distances dx and dy from any lo-
cation (x, y) to the origin of the Gaussian function x0, y0 (here (0,0) for the
standard normal distribution). In this work, the covariance matrix, Σ = σ2I,
(where I is the identity matrix) is diagonal for the specific case of the kernel
being aligned with the grid axes. Convolution of an uncorrelated mG field
with a Gaussian kernel creates a realization of a spatially correlated random
field. A discretized uncorrelated mG field (e.g., as described on a mesh)
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can be created by simply sampling values at the mesh points i.i.d. from a
standard normal.

The spatial correlation of the mG field is defined by the FWHM of the
Gaussian kernel used to create the Gaussian field. The FWHM parameter is
commonly used as a spatial measure in image processing:

FWHM = σ
√

8 ln(2) (12)

where σ is the standard deviation of the Gaussian kernel. Truncation of a
Gaussian field at a threshold u defines the u− level excursion set:

Xu =
{
x ∈ RD : Y (x) ≥ u

}
(13)

and the variogram, of the random set Xu can be calculated:

γu(h) =
1

π

∫ arcsin(
√
γ(h)/2)

0

exp

(
−u

2

2
(1 + tan2(t))

)
dt (14)

at lag spacings h. Variogram models that are linear at the origin (e.g.,
exponential, hyperbolic) cause the perimeter of Xu to be infinite (see [? ],
Section 16.1) and we restrict our work here to Gaussian kernel functions.

Three related properties of the truncated Gaussian field (following [? ])
are:

N , the number of pixels above the truncation threshold, u,
m, the number of distinct regions (inclusions) above the threshold, and
n, the number of pixels in each region,

with expectation relationship E[N ] = E[m]E[n]. For threshold value, u, the
number of cells above that threshold, N , is provided by the Gaussian cdf and
the size of the domain, S:

E[N ] = S

∫ ∞
u

(2π)−1/2e−z
2/2dz (15)

The Euler Characteristic, EC, in D = 2 represents the number of con-
nected objects in the domain minus the total number of holes within those
objects. Therefore EC goes to 0.0 at u = 0 and EC becomes negative when
u < 0.0 as the truncated field represents a single domain-spanning object
containing a large number of holes. In 2D, the absolute value of EC is the
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number of distinct inclusions of either phase within the opposite phase and
is used here to determine E[m].

E[m] = |EC| = |(2π)−(D+1)/2W−DuD−1eu
2/2| (16)

where W is an alternative measure of the spatial correlation of the mG field
defined as a fraction of the FWHM:

W = FWHM/
√

4 ln(2) (17)

For a given threshold, u, the average object area is found from the ex-
pectation relationship:

E[n] = E[N ]/E[m] = E[N ]/|EC| (18)

Figure 1 compares a direct calculation of EC using the Matlab Image
Processing toolbox [? ] with estimates made using Equation 16 across a
range of u values increasing from left to right. The corresponding binary
fields (500 x 500 cells) are also shown for several representative threshold
values.

3. Reduced Model Estimation

The properties of the truncated Gaussian field are used with the DBU
method to develop an approximation for Keff of a binary field. These estima-
tions are done as a function of the proportion [0, 1] of the high permeability
phase (p1) as defined by the threshold, u. A critical component of the DBU
approach is Dnorm. We employ a combination of spatial point process theory
and use of FWHM as a characteristic distance of the truncated field to esti-
mate Dnorm and refer to this approach as TG-DBU. The development here
is for isotropic fields.

At u values near−∞ or +∞, the distances between centroids of inclusions
are approximated as the distribution of nearest neighbor distances, d, from
a Poisson point process (e.g., [? ]) with an intensity λ = |EC|/S:

F (d) = 1.0− exp(−πλd2) : d ≥ 0. (19)

The estimated average distance between inclusion centroids, D
∗

is:

D
∗

=

√
S

|EC|
1

π
(20)
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Es#mated EC 
Observed EC 

Decreasing propor#on of high conduc#vity material 

) 

“Low in High”  “High in Low” 

Figure 1: Observed (calculated) and estimated Euler characteristic for a truncated mG
field as a function of u. The corresponding binary fields are shown for select thresholds.
Regions of high conductivity are colored black.

This approximation only holds at the extreme values of u (see [? ]) as
the distances between inclusion centroids overestimate the distance between
inclusion edges as the average inclusion size, approximated as E[n], increases.
The value of D

∗
is adjusted to account for the inclusions having non-zero area

by subtracting twice the average object radius D
∗

= D
∗ − 2

√
E[n]/π.

The DBU calculates distances between objects in the downstream direc-
tion only. The nearest neighbor distance calculation is adjusted to account
for this preferential search direction through incorporation of a half angle, θ,
that constrains the search for objects in the +/- 90 degree directions at u =
0.0 and with θ decreasing as u moves to the extreme values:

θ = −2π(p1 − 0.5)2 + π/2 (21)

This expression defines an exponential distribution for the variable θx2 (af-
ter [? ], page 34).

The geometry and connectivity of the binary patterns in truncated Gaus-
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sian fields vary considerably as u increases from −∞ to +∞ (Figure 1).
Near the extreme values of u, the field is composed of independent high/low
conductivity inclusions in a matrix of the opposite material. As u moves
towards 0.0, the inclusions begin to coalesce forming larger inclusions with
shapes that are roughly approximated by overlapping circles. At u values
even closer to 0.0, the inclusions begin to span the domain and at u = 0.0,
there is no distinction between what is background and what is inclusion.

Conceptually, for the case of isotropic Gaussian fields the calculated value
of D will never go to zero. As u moves towards 0.0 from either extreme, the
D calculation changes from that of distances between isolated independent
inclusions to distances between a few isolated inclusions and a main inclusion
composed of several inclusions that were isolated at lower u values and finally
to distances from one portion of a domain spanning inclusion across holes to
another portion of that same inclusion.

At u = 0.0 (p1 = 0.50) the average flow distance within the low perme-
ability background should be equal to the FWHM distance. This assertion
is due to the FWHM being the expected size of both the inclusions and the
background matrix at this threshold.

This conceptualization provides the final piece of the effective conductiv-
ity approximation. For a given value of u, or the corresponding value of p1,
D is estimated as the maximum of the average distance between inclusion
edges and the FWHM :

D
∗

= max

[√
S

|EC|
1

π
− 2
√
E(n)/π, FWHM

]
(22)

and used with Equation 1 to calculate KB. This formulation is referred to as
the basic model in the remainder of this paper. Figure 2 compares the results
of the basic model against effective conductances calculated numerically using
MODFLOW-2005, [? ]. Harmonic averaging is used to calculate internodal
conductances within MODFLOW. An ensemble of 30 mG fields are created
on a 500 × 500 grid (with cells of unit size) with a convolution kernel of
FWHM of 37.7 length-units (σ = 16.0). These mG fields are transformed to
binary fields through truncation at thresholds uniformly spaced from p1 =
0.04 to 0.96. Additionally, thresholds of u = -2.5 and 2.5 are used to create
the minimum and maximum p1 values for each field: 0.0062 and 0.9938. This
process results in truncation of each field at 26 unique thresholds. For each
of the 26 u threshold values, the average numerical result across 30 fields
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(780 evaluations) is shown. We define the ratio: K1/K2 using the log10
conductivity values: κ = log10(K1) − log10(K2) and show results for κ = 2
and 4 in Figure 2.

The basic model utilizes an exceedingly simple parameterization of the
mean distance between inclusions and produces relatively accurate estimates
of the effective conductance. The basic model estimates are less than a factor
of 2 (100 percent error) away from the numerical results for the case of κ = 2
for all values of p1 with the most accurate results for p1 < 0.50. The basic
model tends to overestimate the numerical results at p1 > 0.50. For the case
of κ = 4, the basic model strongly overestimates the numerical results at
p1 > 0.50.

Several extensions to the basic model distance calculations are incorpo-
rated for the final TG-DBU model. At low values of p1, the basic model
underestimates the numerical results and smaller distance values are needed
to minimize this error. Additionally, the degree of underestimation increases
with increasing κ (Figure 2). At levels of p1 above 0.50, the basic model over-
estimates the numerical results and, due to application of the phase change
theorem at these higher proportions, the distances must also be decreased in
this region. The correction here must also be a function of κ.

The extended distance calculation is:

D
∗

=


max

[√
S
|EC|

1
π
− 2
√
E(n)/π, FWHM

(κ−1.0)

]
for p1 < 0.50

max
[√

S
|EC|

1
π
− 2
√
E(n)/π, FWHM × (1.0− p1)κ−1

]
otherwise.

(23)
The extended distance calculations significantly improve the ability of the

TG-DBU model to estimate the effective conductivity (Figure 2). For the
case of κ = 2 the maximum error is reduced to less than 40 percent and for
the κ = 4 case, the maximum error is less than 100 percent with the largest
improvement occurring at p1 > 0.50.

4. Comparison to Analytical and Numerical Results

The TG-DBU estimated effective conductivity values are compared to
existing models for values of p1 in [0, 1.0] and for κ values of 2 and 4. Vi-
sual comparisons and calculations of the percent relative error between the
estimated values and numerical results are examined for two inclusion sizes.
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Figure 2: Comparison of effective conductivity values estimated with the basic model
and the TG-DBU approaches to numerical results. The percent error of the effective
conductivity solutions relative to the numerical results are shown in the right hand images.
Results for two and four orders of magnitude difference in the modal conductivities are
shown in the top and bottom rows, respectively. Results are for Gaussian fields created
with an FWHM of 37.7 (σ = 16.0) length-units. The gray dots and dahsed lines indicate
the limiting values of arithmetic and harmonic averages and the Hashin-Shtrikman bounds.
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Comparisons are made to a self-consistent effective medium approximation
[? ? ] that also employs the phase interchange theorem. Additionally,
a series of binary fields are created from truncation of mG fields and used
as input to the DBU approach of [? ] as well as numerical calculation of
effective conductivity.

The self consistent approximation to solution for an effective medium [?
], [? ] uses the phase-interchange theorem to provide effective conductivity
estimates across all proportions of high/low conductivity material. Equation
14 of [? ] provides an analytic solution for the effective conductivity in a 2D
domain with circular (isotropic) inclusions.

Keff = (K1 −K2)(p1 − 1/2) + 1/2
√

(1− 2p1)2(K1 −K2)2 + 4K1K2 (24)

The DBU approach of [? ] as outlined in Section 2 is applied to each
binary field. The same fields are also used as input to numerical calcula-
tions done with MODFLOW-2005 ([? ]). For each inclusion size, DBU and
numerical results are calculated on 30 fields at each of 26 thresholds.

For any geometrical combination of two materials with separate conduc-
tances, the arithmetic and harmonic averages provide the upper and lower
bounds on the resulting effective conductivity. These averages are used fre-
quently for problems involving flow through porous media and are also known
as the Wiener bounds within statistical physics. Tighter bounds on the ef-
fective conductivity can be defined when information on the geometry of the
inclusions is available. For a binary material composed of circular inclusions
of one material within another, the Hashin-Shtrikman bounds [? ] provide
tighter limits on the effective conducitivity estimates (see also [? ] and [?
]). Both sets of bounds are calculated as reference for the different effective
conductivity calculations.

Results comparing the model developed here to results of effective media
theory (EMT) through the self-consistent approach [? ? ], the DBU ap-
proach [? ] and numerical results are shown in Figure 3. These results were
created from fields with a FWHM of 37.7 length-units. The TG-DBU and
the EMT results are calculated independently of the actual binary field and
require the phase proportions, the two modal conductances and the inclusion
shape as inputs. The TG-DBU also utilizes the FWHM as an input. The
DBU and numerical results are dependent on the actual binary fields, and
for these results, each value in Figure 3 represents the average conductance
calculated over 30 realizations. The deviations of the DBU estimates from
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the numerical estimates at proportions just above 0.50 appear to be an ar-
tifact of the distance calculations done here on the truncated mG fields and
are not a function of the DBU technique [? ].

The right-hand side of Figure 3 shows the percent error of the three
estimators relative to the numerical results. The axes are limited to +/-
100 percent, or a factor of +/- 2, for calculations where the modal conduc-
tivities vary by factors of 100 (top) and 10,000 (bottom). Relative to the
self-consistent approach, the two distance-based upscaling techniques better
capture the effective conductivity at proportions of the high conductance
phase p1 > 0.50.

For all three approaches, errors are highest at or near p1 = 0.50. This
proportion corresponds to the percolation threshold for both a square lattice
and square tiles in 2D [? ] and represents the change point where the high
conductivity phase becomes fully connected across the domain. Percolation
theory and the percolation threshold have been developed for systems with
no spatial correlation and are applied here where the ratio of FWHM to
domain size is small (i.e., < 0.10). For these calculations, the size of the
FWHM relative to the domain size is 0.075.

The approaches examined in this study define an effective conductivity for
the domain. Effective properties are meaningful in cases where the domain
size is much larger than the correlation length of the random field contained
within the domain. This condition is also the definition of an ergodic field
and a rule of thumb is that an effective property can be assigned to a domain
when the correlation length is ≤ 0.10 of the domain size. In cases where
the domain is discretized into smaller cells, or blocks, and the correlation
length exceeds this limit relative to the cell size, a block property is assigned.
Additional details on effective versus block properties are provided in [? ].

As the FWHM increases, development of phase connection across the
domain will occur at lower proportions of that phase. Figure 4 shows the
results of calculations for a FWHM of 73.4 length-units (σ = 32.0), or 0.15
of the domain size.

The increase in the relative size of the inclusions decreases the proportion
of high-conductivity material necessary to create a connected phase across
the domain and the effective medium techniques tend to underestimate the
numerical conductivity beginning at approximately p1 = 0.30. This under-
estimation is particularly apparent in the κ = 4 results. All techniques ex-
amined are able to create reasonable estimates of the block conductivity for
p1 > 0.6. These results are motivation for future work to improve block
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Figure 3: Comparison of TG-DBU results, to the EMT solution, the DBU solution and
numerical results. The harmonic and arithmetic average bounds (gray dots) and the
narrower Hashin-Shtrikman bounds (dashed gray lines) are also shown. The percent error
of the effective conductivity solutions relative to the numerical results are shown in the
right hand images. Results for two and four orders of magnitude difference in the modal
conductivities are shown in the top and bottom rows, respectively. Results are for Gaussian
fields created with an FWHM of 37.7 (σ = 16.0) length-units.

16



0 0.25 0.5 0.75 1
10

0

10
1

10
2

E
ffe

ct
iv

e 
C

on
du

ct
iv

ity

High Conductivity Proportion

 

 

Numer.
EMT
DBU
TG−DBU

0 0.25 0.5 0.75 1
−100

−50

0

50

100

P
er

ce
nt

 E
rr

or

High Conductivity Proportion

 

 

EMT
DBU
TG−DBU

0 0.25 0.5 0.75 1
10

0

10
1

10
2

10
3

10
4

E
ffe

ct
iv

e 
C

on
du

ct
iv

ity

High Conductivity Proportion

 

 

Numer.
EMT
DBU
TG−DBU

0 0.25 0.5 0.75 1
−100

−50

0

50

100

P
er

ce
nt

 E
rr

or

High Conductivity Proportion

 

 

EMT
K DBU
TG−DBU

Figure 4: Comparison of TG-DBU results, to the EMT solution, the DBU solution and
numerical results. The harmonic and arithmetic average bounds (gray dots) and the
narrower Hashin-Shtrikman bounds (dashed gray lines) are also shown. The percent error
of the effective conductivity solutions relative to the numerical results are shown in the
right hand images. Results for two and four orders of magnitude difference in the modal
conductivities are shown in the top and bottom rows, respectively. Results are for Gaussian
fields created with an FWHM of 73.4 (σ = 32.0) length-units.
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conductivity estimates by incorporating percolation threshold behavior into
the TG-DBU formulation.

5. Results and Discussion

The value of D is a key feature of the the DBU and TG-DBU approaches
and final effective conductances are sensitive to these values. Distance calcu-
lations are explored further in Figure 5 and compared to average distances
across the background material as calculated along streamlines.

The basic model and the DBU model derive average distances from purely
geometrical considerations and these values do not change as a function of
κ (Figure 5). The average distances along streamlines are also quite stable
across the change in κ while the TG-DBU approach explicitly incorporates
the κ value into the average distance calculation. With the exception of the
TG-DBU model, the FWHM serves as an excellent approximation of a lower
limit on the distance values calculated by the different approaches.

The average distances from the streamline values are the largest of all cal-
culated values. Examination of streamlines in truncated binary fields shows
that streamlines crossing the background material occurs when flow is nearly
normal to the direction of the average gradient (Figure 6). This observa-
tion is contrary to the development of the DBU and TG-DBU that limit the
search across background material to other inclusions located in the down-
gradient direction. This observation of high local gradients creating flows
in directions nearly normal to the average gradient is consistent with field
observations and numerical model results for hydraulic gradient monitoring
networks [? ? ]. For the isotropic fields examined here, the FWHM is an
excellent approximation of D at p1 near 0.50 both along the direction of the
gradient and orthogonal to it.

The average distances calculated by the DBU method are weighted by
the sizes of the inclusions on either end of the travel distance. In contrast,
the TG-DBU employs a single average inclusion size, E[n] for a given p1,
thus weighting all distances equally. Figure 5 indicates that longer distances
are generally connected to larger inclusions of high permeability material
and are more highly weighted in the DBU approach relative to the TG-DBU
calculations. The distribution of distances calculated along streamlines are
similarly skewed towards larger values.

The basic model and the DBU approach are developed as a function of p1
and the average distances between objects. However, effective conductivity
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Figure 5: Comparison of average distance estimates for different calculation approaches.
The DBU and Streamline results are average values calculated over 30 realizations. Results
are for Gaussian fields created with κ values of 2 (A) and 4 (B) and an FWHM of 37.7 (σ
= 16.0) length-units.

is not solely a function of the geometric arrangement of the inclusions. The
κ value influences the average distance taken by flowpaths across the lower
conductance material and simulations show that changes in κ have the largest
impact on flow paths at p1 values near 0.50. As an example, Figure 6 shows
significant changes in the flow path locations for the same binary field at κ
values of 2.0 and 4.0.

The average streamline distances (Figure 5) are nearly unchanged from
κ = 2 to κ = 4, yet Figure 6 shows significant changes in the locations of the
streamlines on the same field for the two different κ values. The calculations
of average distances for Figure 5 do not include a calculation at exactly p1 =
0.50 (0.48 and 0.52 are the closest). The simulation results in Figure 6 are
at exactly p1 = 0.50 and show differences in the average streamline distances
with values of 25.4 and 34.9 for the κ values of 2 and 4, respectively.

The impact of the κ value and the initiation of a percolating cluster
precludes accurate application of distance-based uspcaling techniques for es-
timation of block-scale properties. Figure 7 shows both D calculated along
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A  B 

Figure 6: Comparison of flowpath locations for the same binary field with κ values of 2
(A) and 4 (B). Results are for Gaussian fields created with an FWHM of 37.7 (σ = 16.0)
length-units and a threshold of u = 0.00 (p1 = 0.50). In both images, flow is from left to
right.

streamlines and the effective conductance calculated numerically for four dif-
ferent truncated Gaussian fields. The streamline-based D values are normal-
ized by the FWHM and the numerical Keff is normalized by the geometric
mean conductivity. The region around p1 = 0.50 is highlighted with flow and
streamline solutions at p1 increments of 0.008.

For each simulation with κ = 4, there is a significant increase in the effec-
tive conductance at the percolation threshold. This increase is not evident
in the κ = 2 results. The average streamline distances between high perme-
ability inclusions are not a strong function of p1 and show gently decreasing
values from p1 = 0.40 to 0.60. These values are well approximated at p1
values near 0.50 by the FWHM (ratio of 1.0) for both κ values. The vertical
lines in Figure 7 indicate the location of the percolation threshold and vary
from p1 <= 0.43 to near 0.57 in these four example fields.

6. Conclusions

This paper presents truncated mG fields as a flexible means of creating
simulated binary media and then extends distance-based upscaling to di-
rectly utilize properties of the truncated mG fields for calculation of effective
conductivity values. Excursion set theory provides techniques for estimation
of the number of inclusions, and average inclusion size from knowledge of the
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Figure 7: Effective conductances and average streamline lengths for p1 values near 0.50.
Results for four different fields are shown. The vertical black line denotes the percolation
threshold. Effective conductances are normalized by the geometric mean conductance.
Average streamline lengths are normalized by the FWHM.

threshold and the kernel size (FWHM). These results are coupled with point
process theory and distance-based upscaling (DBU) to develop a robust es-
timator of the effective conductivity of binary media. This new approach is
called Truncated Gaussian-Distance Based Upscaling (TG-DBU). TG-DBU
is based on expectation relationships and does not require instantiation of
the binary field for estimation of the effective conductance.

TG-DBU is unique among upscaling approaches considered in that the
kernel/inclusion size parameterized as the FWHM is a direct input to the up-
scaling function. We introduce the FWHM as a characteristic length for this
upscaling and demonstrate its applicability for estimation of distances be-
tween inclusions across a broad range of p1. Extensions to the geometrically-
derived basic model that account for deviations in the estimated effective
conductivities near the percolation threshold and account for the impact of
κ on flow path distances between inclusions result in the TG-DBU model.
Comparison of TG-DBU with numerical, DBU and EMT approaches demon-
strates the accuracy of TG-DBU and shows results that are at least as accu-
rate as the other techniques for all values of p1 for the fields examined.

Understanding the role of the average distance between inclusions and
the sensitivity of this measure to other parameters is critical for further
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development of any distance-based upscaling techniques including TG-DBU.
The impact of p1, κ and the percolation threshold on numerical calculations
of effective conductivity and distances between inclusions along streamlines
were examined. Results show that local gradients normal to the direction of
the average gradient cause streamlines to traverse the background material
in a direction orthogonal to the average flow direction. For isotropic media
examined here, the FWHM value provides a robust approximation of the
average streamline distance in the background material at p1 values near
0.50 and these results are not significantly impacted by percolation behavior
or the value of κ. These results indicate that for anisotropic media where
a maximum and minimum FWHM are used to define the Gaussian kernel,
the FWHM normal to the flow direction will provide the best estimate of the
average distance between inclusions. Effective conductances calculated across
the percolation threshold indicate that the effective conductivity is a strong
function of the κ value when κ = 4, but at κ = 2 crossing the percolation
threshold has little effect on the resulting effective conductance. For the κ =
2 results, the geometric mean permeability serves as a reasonable estimate of
Keff on both sides of the percolation threshold. For the 30 fields examined,
the percolation threshold is reached at p1 values ranging from less than 0.40
to greater than 0.60 indicating that estimation of effective conductance values
is possible, but that detailed knowledge of the field geometry and percolation
threshold are necessary for estimation of block-scale properties.
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